An almost Schur theorem on 4-dimensional manifolds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An integrability theorem for almost Kähler manifolds

In this paper we prove a new geometric integrability theorem for almost complex manifolds. Let M be a connected, oriented, smooth 2m real dimensional manifold with an U(m) structure on its tangent bundle. Moreover let ∇ be a compatible connection on it. Assume the complexified curvature of the connection has vanishing (0, 2) component. Then we claim that M can be given the structure of an m com...

متن کامل

An integrability theorem for almost complex manifolds I

In this paper we prove a new geometric integrability theorem for almost complex manifolds. Let M be a connected, smooth 2m real dimensional manifold with an U(m) structure on its tangent bundle and ∇ be a compatible connection on it. Assume the complexified curvature of the connection has vanishing (0, 2) component. Then we claim that M can be given the structure of an m complex dimensional Käh...

متن کامل

An Existence Theorem for Stationary Discs in Almost Complex Manifolds

An existence theorem for stationary discs of strongly pseudo-convex domains in almost complex manifolds is proved. More precisely, it is shown that, for all points of a suitable neighborhood of the boundary and for any vector belonging to certain open subsets of the tangent spaces, there exists a unique stationary disc passing through that point and tangent to the given vector. Introduction Ana...

متن کامل

An Open Collar Theorem for 4-manifolds

Let M4 be an open 4-manifold with boundary. Conditions are given under which M4 is homeomorphic to <9Afx[0, 1). Applications include a 4-dimensional weak /¡-cobordism theorem and a classification of weakly flat embeddings of 2-spheres in 5"*. Specific examples of (n-2)-spheres embedded in S" (including n = 4) are also discussed.

متن کامل

Wong-rosay Theorem in Almost Complex Manifolds

We study the compactness of sequences of diffeomorphisms in almost complex manifolds in terms of the direct images of the standard integrable structure.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2012

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-2011-11065-7